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Abstract. Integration of pre- or peri-operative images may improve im-
age guidance in minimally invasive interventions. In abdominal catheter-
ization procedures such as transcatheter arterial chemoembolization, 3D
pre-/peri-operative images contain relevant information, such as com-
plete 3D vasculature, that is not directly available from 2D imaging.
Accurate knowledge of the catheter tip position in 3D is currently not
available, and after registration of 3D information to 2D images (an-
giographies), the registration is invalidated by breathing motion and thus
requires continuous updates. We propose a hidden Markov model based
method to track the 3D catheter position, using 2D fluoroscopic image
sequences and a 3D vessel tree obtained from 3D Rotational Angiogra-
phy. Such a tracking facilitates display of the catheter in the 3D anatomy,
and it enables to use the 3D vessels as a roadmap in 2D imaging. The
tracking is initialized with the first 2D image of the sequence. For the
subsequent images, based on a state transition probability distribution
and the registration observations, the catheter tip position is tracked in
the 3D vessel tree using registrations to the 2D fluoroscopic images. The
method is evaluated on simulated data and two clinical sequences. In the
simulations, we obtain a median tip position accuracies up to 2.9 mm. On
clinical sequence, the distance between the catheter and the projected
vessels after registration is below 1.9 mm.
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ray, Fluoroscopy, 3DRA, hidden Markov Model, Abdominal, TACE, Liver,
Breathing

1 Introduction

Minimally invasive procedures are commonly performed to treat various diseases
because they are less demanding and risky for the patient than, for example, open



surgeries. In such procedures, as direct eyesight is lacking, physicians require
intra-operative images to visualize the instruments and the anatomy. During
catheterization interventions, 2D fluoroscopic (X-ray) imaging is usually used,
but the noise, 2D projection and inability to continuously use contrast agent
prevent physicians to have a continuous understanding of the instrument position
with regard to the 3D vasculature.

The purpose of our work is to improve image guidance in 2D X-ray guided
sequence abdominal catheterization procedures, specifically during transcatheter
arterial chemoembolization (TACE) procedures, by using 3D information from
peri/pre-operative images. During the procedure, the physician injects chemother-
apeutic agents and embolizes liver tumors by inserting a catheter into the femoral
artery and guiding it toward the tumors. The physician uses single-plane 2D
X-ray images in which only the catheter and the ribs are visible (Fig. 1). Pre-
operative 3D Computed Tomography Angiography (CTA) and intra-operative
2D angiographies (X-rays with contrast agent) are acquired, providing detailed
images of the arterial tree, and enabling a roadmap to guide the catheter. How-
ever, such static roadmaps are hampered by breathing motion and catheter de-
formation. We therefore propose a 3D tracking method that follows the position
of the catheter tip in the 3D vessel tree, enabling guidance in the 3D image as
well as facilitating continuous roadmapping.
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Fig. 1. TACE overview (left) and fluoroscopy example (right).

Image fusion and 3D/2D registration have already been addressed in the
literature (see reviews [5, 7]), particularly for 2D X-ray guidance in cranial [8],
cardiac [10] and abdominal [3] interventions. These methods rely on anatomical
structures such as bones or the vasculature. A vessel-based rigid or non-rigid reg-
istration is done between pre-/peri-operative 3D images and single/bi-plane 2D
angiographies or 2D fluoroscopies. These approaches align the 3D vessels with the
2D vasculature visualized using contrast agent. Such approaches cannot be used
continuously because of the toxic nature of the contrast agent. Without contrast
agent, in cardiac interventions, Ma et al. [6] use features such as diaphragm/heart
border, tracheal bifurcation or the catheter to correct for breathing motion. In



2D abdominal fluoroscopies, however, such features are lacking. Other methods
propose 3D/2D registration with peri-operative 3D Rotational Angiographies
(3DRA) or Cone Beam Computed Tomography (CBCT) [1,2,11] where the cal-
ibrated geometry of the C-arm enables accurate alignment with the 2D X-ray
images (acquired with the same device). Such an approach is effective in cranial
interventions, as the head does not deform [11], but in abdominal procedures,
the breathing motion invalidates the alignment. That is why a semi-automatic
method following a region of the catheter [2] and a catheter-based registration [1]
have been proposed to follow the catheter. Ambrosini et al. [1] have an automatic
registration but when the catheter visible part is too short, the alignment fails.
Position tracking of catheters has been addressed less frequently. The method
proposed by van Walsum et al. [13] is one of the first approaches for neural
applications.

In our work, we combine a hidden Markov model (HMM) [9] with 3D/2D
registration to track the catheter tip in 3D over the time. The main contribution
is a novel method for tracking the catheter tip in 3D, using a 3D vessel tree,
2D images and a HMM. The method is evaluated using a large set of simulated
catheter motions in patient 3D datasets, and demonstrated on two patient cases.

2 Method

The purpose of our method is to track the catheter tip inside a 3D vessel tree,
where the catheter position in 2D is obtained from the interventional X-ray
images. As the catheter is assumed to be in the vasculature tree and as its
displacement is relatively small between subsequent 2D images, we propose to
model the catheter motion within the 3D vessel tree using hidden Markov model
(HMM) [9]. Each 3D point of the vessel centerlines represents a state that denotes
the probability that the catheter tip is at that location. Each state is linked with
state transitions between connected close-by vessel parts. The observations to
update the HMM are based on a 3D/2D registration metric where the 3D vessel
tree is aligned with the 2D catheter visible in the image.

In the following, we explain the HMM, followed by a description of how the
different elements of the HMM are integrated in our 3D tracking method.

2.1 Hidden Markov model

A HMM is described as a system with a set of states S = {s1, . . . sN} (Fig. 2).
The HMM changes, at each time point t, according to the probabilities associated
with the states and the current set of observation Ot = {Ot(1), . . . Ot(N)}. The
transition probabilities between states are defines in a matrix A (with a N ×N
dimension) where each aij ∈ A is the probability that the state i can move to
the state j (aij ≥ 0 and

∑
j

aij = 1).

Following Rabiner et al. [9], the Viterbi algorithm selects at time t the most
probable path through the state space based on the maximum δt(i) which is the
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Fig. 2. HMM with 3 states and its matrix A of state transition probabilities.

best score (highest probability) along a single path that ends in state si. Viterbi
takes into account the first t observations. Starting from an initial distribution of

the probabilities over the states π = {π1, . . . πN} where
N∑
j=1

πj = 1, the algorithm

initializes the δ1(i) as follows:

δ1(i) = πi ·O1(i) ,

where O1(i) is an observation score given that we are in the state si at time
t = 1. Next, the subsequent δt(i) can be computed using recursion:

δt(j) = max
i

[δt−1(i) · aij ] ·Ot(j) .

2.2 Catheter tip tracking
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Fig. 3. HMM with a simple vessel tree. Here, the transitions between possible tip
locations exist only with direct neighbours and are equiprobable. The Viterbi path
goes to the optimum tip position knowing the observations O1. . .O5 in the 5-images
sequence.



Timepoint and states At each timepoint t, a single 2D fluoroscopic image
of the complete image sequence is processed. In this image, the 2D catheter
centerline Ct = {c1, . . . cnC} is extracted, where c1 is the tip of the catheter.
The full 2D catheter is used during the 3D/2D registrations to compute the
observations. A set of 3D points P = {p1, . . . pN}, corresponding to the 3D
vessel centerlines, is extracted from the peri-operative 3DRA. In the HMM, the
probability of being in state si is the probability of the catheter tip being at
position pi (Fig. 3).

Matrix A of state transition probabilities Each aij in the matrixA contains
the probability that the catheter tip moves from the position pi to pj (state si
to sj) between two images. In the context of tip motion, the closer pi and pj
are, the higher the probability of transition should be.

To define A, the transition probabilities are set according to the distance
along the vessel path between points pi and pj of the 3D vessel tree and dis-
tributed with a Gaussian function:

a
′

ij = e
−
D(pi,pj)

2

2σ2a

where σa controls how far the catheter tip can move. If {l1, . . . ln} is the set of
points representing the vessel centerline between the points pi = l1 and pj = ln,
D(pi, pj) is defined as the sum of the distances between each neighboring pair
lk, and lk+1:

D(pi, pj) =

n−1∑
k=1

||lk, lk+1|| .

Because the matrix A defines probabilities,
∑
j

aij has to be equal to 1 so we

normalize the coefficients to obtain aij = a
′

ij .(
∑
j

a
′

ij)
−1.

Observations An observation score Ot(i), under the assumption that the ca-
theter tip is at the position pi (thus in the state si), has to be determined. From
the 3D vessel tree, the unique 3D catheter path centerline Vi = {v1, . . . vnV },
starting from the tip pi and going to the root of the tree, is extracted. This 3D
path Vi is registered to the current 2D catheter Ct, obtaining a rigid transforma-
tion that aligns the 3D vessel tree with the catheter centerline in the 2D image.
The observation score Ot(i) (between 0 and 1) using the metric M of the 3D/2D
registration is defined as follows:

Ot(i) = e
−M(Ct,Vi)

2

2σ2s

where σs controls the registration score distribution and where M is defined as
the minimum sum of the minimal distance between each point of the 2D catheter



Ct and any projected point of the 3D centerline Vi:

M(Ct, Vi) = min
τ

(∑
c∈Ct

min
v∈Vi
||c− Fproj(v, τ)||

)

where Fproj(v, τ) is the projection of the 3D point v onto the 2D images and τ
represents a 4 degrees of freedom rigid transformation matrix (three rotations
and one translation) used to align the catheter Ct and the vessel path Vi. We
define the projection function Fproj as follows (Fig. 4):

Fproj(v, τ) = Tproj.Tdet←w.Tw←li .τ.Tli←w.T−−→pili
.v

where Tproj is the cone-beam projection and Tdet←w the transformation matrix
from the C-arm world to the detector (X-ray image plane). Both transformations
are known because of the C-arm geometry (given in the DICOM file). As the
projection of the 3D tip pi has to match the 2D catheter tip c1 (i.e. Fproj(pi, τ) =
c1), the search of the transformation τ translates along the line from c1 to the
origin of the X-ray projection and rotates around it (Fig. 4). li is the intersection
point of the projection line of c1 and the plane, containing pi, parallel to the
patient table. It is a coherent starting point for the registration search because
we are expecting mostly only a breathing motion of pi in the cranial-caudal
direction. τ is thus computed in the coordinate system around li. T−−→pili

is the

in-plane translation from pi to li in the world coordinate system.
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Fig. 4. Transformations in the projection function Fproj.

Viterbi For each image in the sequence, using the Viterbi algorithm [9], the
Viterbi path (best tracking of the tip) is computed from the initial state position
at the first image to the current image. The result gives the highest probability



of the 3D tip position pi and also (as a 3D/2D registration has been performed
during the observations computations) the transformation τ to align the 3D
vessel tree inside the 2D fluoroscopy.

3 Experiments and Results

We perform two experiments. First, we evaluate the accuracy of the catheter tip
tracking using clinical image data where the catheter and the breathing motion
are simulated. In these experiments, the availability of the ground truth from the
simulation permits quantitative evaluation. Next, we demonstrate the approach
for tip tracking on two real image sequences.

3.1 Implementation

We retrospectively acquired anonymized data of 19 TACE procedures in three
different hospitals using intervention rooms with angiographic C-arm systems
(Xper Allura, Philips Healthcare, Best, the Netherlands). In total, we acquired
67 fluoroscopic image sequences. A 3DRA was acquired at the beginning of each
intervention when the catheter was in the hepatic artery. The 2D catheter is
manually segmented in each fluoroscopic image and the 3D vessel tree in the
3DRA is extracted with a semi-automatic method based on thresholding and
skeletonization [12].

The matrix A of state transition probabilities is built with σa = 12 mm
which enables a relatively large catheter tip motion per frame. The registration
score uses σs = 1.5 mm, which penalizes registrations where the normalized
sum of the minimal distance M(Ct, Vi) is larger than 1.5 mm. These values have
been chosen after a pilot on one simulated image sequence. For the initialization,
δ1(i) is equal to 1 in the state where the tip is and equal to 0 for all the other
states. We manually initialize the tip position of the first image of each sequence.
The discretization of the 3D blood vessel and the 2D catheter are set to 3 mm.
Because the method has to be computed in real-time, the number of observations
Ot(j) to compute at time t is limited to 50. Thus, to calculate every δt(j), we sort
in descending order the states sj based on the probabilities max

i
[δt−1(i) ·aij ] and

compute the observations Ot(j) for the 50 first states sj in the sorting. All the
other state observations are assumed to return a score close to 0, as those states
have very low probabilities. Therefore these observation scores are set directly
to 0 without any computation and thus δt will be also 0. When we compute
the observation scores, M(Ct, Vi) is minimized using the Powell optimizer to
find the 4 degrees of freedom rigid transformation matrix τ . The search space is
limited to ±2◦ for the three rotations and ±2 mm for the translation along the
projection line. The average computation time for each image is below 60 ms
with a 2.0Ghz Intel Core i7 processor.



3.2 Clinical data with a simulated catheter and breathing motion

As we do not have ground truth for the catheter position in 3D in our clinical
data, we evaluate our method on simulated data. We use the 3D vessel tree from
the 3DRA and also the projection geometry of the fluoroscopic images sequence
(saved in the DICOM file). Initially, the catheter tip is positioned at a proximal
location in the 3D vessel tree, and over time the tip is advanced. The catheter
shape in 3D is obtained by smoothing the corresponding vessel centerline with a
Gaussian kernel. The effect of liver motion due to respiration is simulated with
a translation along the y-axis (cranial-caudal direction), where the translation
magnitude is defined as:

translationy(i) = λ · sin(
2π

β
· i ·∆t −

π

2
)

where λ = 10 mm is the peak amplitude, β = 4 s the respiration period, i the
number of the current image in the sequence and ∆t = 0.133 s the time between
two images, obtained from the fluoroscopic image frequency.

The simulated catheter tip has three different constant speeds: 1.5, 3 and
6 mm/frame (resp. 11.2, 22.5 and 45 mm/s), which is similar to tip speeds
during clinical procedures. The simulation has two catheter deformations: slight
(Gaussian smoothing with a random (between each image sequence) σ ∈ [3, 6]
mm) and large (σ ∈ [7, 11] mm). We tracked the tip and registered all the
67 simulated sequences starting with the correct initial registration at the first
frame.

To evaluate the tip tracking, we compute the distance between the real tip
and the registered tip chosen by the HMM at every image frame. Both the dis-
tance in the 2D image space and the 3D world space are calculated. The average
distances between the real 2D projected tip and the registered 2D projected tip
for every simulated sequence with different tip speeds and catheter deformations
are presented in Figure 5. The medians of the distances are in a range of 1.1
and 2.7 mm. These distances increase when the deformation is larger and also
when the tip moves faster. The average distances between the real 3D tip and
the registered 3D tip for every simulated sequence with different tip speeds and
catheter deformations are also shown in Figure 5. The medians of the tip dis-
tances are up to 2.9 mm. We define an incorrect tip tracking when the distance
between the real 3D tip and the registered 3D tip, in the last 5 images of a
tracked sequence, is superior to 3 mm. Following this definition, Table 1 shows
the percentage of sequence in which the tracking is incorrect at the end of the
sequence. This percentage is up to 7.8%.

3.3 Clinical data

We applied the method on two clinical sequences. As there is no ground truth
for the 3D tip position available, we qualitatively evaluated whether the track-
ing is consistent. In these sequences, the catheter tip is moved from the hepatic
artery to a vessel close to the tumor. The first frame is manually registered and
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Fig. 5. Average distance for each sequence between the real 2D projected tip and the
registered one with different simulation parameters (left). Average distance for each
sequence between the real 3D tip and the registered one (right).

Table 1. Percentage of incorrect tip tracking at the end of the sequences with different
simulation parameters.

catheter tip speed no deformation slight deformation large deformation

1.5 mm/frame 7.8% 6.2% 7.8%
3 mm/frame 4.7% 1.6% 0.0%
6 mm/frame 3.1% 3.1% 1.6%

the method is run on the sequences (74 frames each at 7.5 Hz). Visual check-
ing showed that the registration is approximately correct. Video clips showing
the tracking on both sequences are available as supplementary material. In the
second sequence, at a bifurcation, the tip goes in the wrong vessel but goes
back to the correct one after two frames. We also computed the distance from
each catheter point (in 2D) to the closest point of the projected centerline Vi
after registration (see Figure 6). For both sequences, the average point distances
between the catheter and the vessel Vi are below 1.9 mm. Figure 7 shows one
registered frame of the first sequence.

4 Discussion and conclusion

We proposed a method for tracking the 3D catheter tip in fluoroscopies using
an HMM and registration with the 3D vessel tree extracted from a 3DRA. The
method uses the Markov models to estimate the probabilities of the states, which
represent the possible catheter tip positions in the 3D vessel tree. The evalua-
tion on simulated data showed a median distance between the real tip and the
registered one up to 2.7 mm in the 2D image space and up to 2.9 mm in the 3D
space. With the two clinical sequences, we obtain an average distance between
the 2D catheter centerline and the projection of the 3D vessel centerline below
1.9 mm.

As the discretization of the catheter centerline and the blood vessel tree is
3 mm, the distances between real tip and registered tip are close to the sampling.
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Fig. 7. Tip tracking with 2D catheter (in orange) and 3D vessel tree projection (in
green). Before the tracking (a), breathing and table motion prevent the alignment.
After the tracking, the roadmap is possible with all the vessel tree visible (b) or only
the vessels after the tracked tip (c). Close view of the 3D tracking tip score δt inside
the vasculature (d) with a colored scale: red (score = 0) to green (score = best score).



The tracking gives better tip accuracy when the motion of the catheter is small
and the catheter deformation is slight. The percentage of incorrect tracking at
the end of the sequence (up to 7.8%) is relatively low and is not impacted by
deformation. It is higher for the slow catheter motion which implies that the
parameter σa for the state transition matrix A is probably too large for static
and slow catheter motion.

Evaluation of the method on the two clinical cases showed that the cathe-
ter and the 3D vessel tree match well. According to our clinical partners, the
tracking of the tip position (both in 2D and 3D) is accurate enough to be used
for roadmapping and to provide the physician with an overview of where the
catheter is and where to go.

Robust automatic 2D catheter segmentation is required after initialization to
integrate our method into the interventional workflow. Heibel et al. [4] obtained
a mean error of real-time catheter tracking less than 1.2 pixels for abdominal
fluoroscopies. Those results should be sufficiently accurate for our registration.
In clinical practice, the first initialization of the catheter tip position can be done
after the 3DRA acquisition by pointing the catheter tip in the 3DRA. Due to
clear visibility of the catheter, this task could be easily automated.

The lack of a ground truth position of the catheter in 3D hampers thorough
evaluation of approaches such as ours, which is why we employed extensive ex-
perimentation using simulated catheter positions obtained from clinical patient
data. Additionally, qualitative evaluation was performed using clinical data only,
demonstrating that the method is able to consistently track the position in 3D.

Whereas we have now fixed the parameter σa for the state transition matrix
A, and the σs for converting the registration distance to an observation score,
based on a pilot experiment, these values could be tuned to a specific patient or
anatomy (e.g. at bifurcations). In the future we therefore intend to investigate
the impact of these parameters and how they should be set optimally for each
case.

To conclude, we have presented a model to track a catheter tip thanks to
2D fluoroscopies and 3DRA. We evaluated the feasibility of our approach with
simulated data demonstrating a tip accuracy below 2.7 mm in 2D image space
and 2.9 mm in 3D space. The method was also successfully applied in two clinical
cases.
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